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The relative motion of drops in shear flows is responsible for collisions leading to
the creation of larger drops. The collision of liquid drops in a gas is considered here.
The drops are small enough for the Reynolds number to be low (negligible fluid
motion inertia), yet large enough for the Stokes number to be possibly of order unity
(non-negligible inertia in the motion of drops). Possible concurrent effects of Van der
Waals attractive forces and drop inertia are taken into account.

General expressions are first presented for the drag forces on two interacting drops
of different sizes embedded in a general linear flow field. These expressions are
obtained by superposition of solutions for the translation of drops and for steady
drops in elementary linear flow fields (simple shear flows, pure straining motions).
Earlier solutions adapted to the case of inertialess drops (by Zinchenko, Davis and
coworkers) are completed here by the solution for a simple shear flow along the line
of centres of the drops. A solution of this problem in bipolar coordinates is provided;
it is consistent with another solution obtained as a superposition of other elementary
flow fields.

The collision efficiency of drops is calculated neglecting gravity effects, that is
for strongly sheared linear flow fields. Results are presented for the cases of a
simple linear shear flow and an axisymmetric pure straining motion. As expected,
the collision efficiency increases with the Stokes numbers, that is with drop inertia.
On the other hand, the collision efficiency in a simple shear flow becomes negligible
below some value of the ratio of radii, regardless of drop inertia. The value of this
threshold increases with decreasing Van der Waals forces. The concurrence between
drop inertia and attractive van der Waals forces results in various anisotropic shapes
of the collision cross-section. By comparison, results for the collision efficiency in
an axisymmetric pure straining motion are more regular. This flow field induces
axisymmetric sections of collision and strong inertial effects resulting in collision
efficiencies larger than unity. Effects of van der Waals forces only appear when one
of the drops has a very low Stokes number.

1. Introduction
Collisions of liquid drops dispersed in a gas are responsible for the creation of

larger drops. The prediction of such events is an important problem for various
applications in nuclear and chemical engineering, environmental sciences, etc.

† Present address: Saint-Gobain Recherche, BP 135, 39 quai Lucien Lefranc, F-93303 Aubervil-
liers Cedex, France.
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The formation of a large drop from two smaller ones may be described in two
steps:

(i) a close approach of the two drops because of a shear flow or a difference in
their velocities of sedimentation; this step is directed by various factors: hydrodynamic
forces due to the flows outside and inside the drops, drop inertia and van der Waals
attractive forces between their surfaces;

(ii) a deformation of the close surfaces leading to their coalescence. Chesters (1991)
established that, in a shear flow, the ratio of the magnitude of the deformation to
the drop radius is proportional to the square root of the capillary number. Here, the
capillary number is typically of the order of 10−6 so that the deformation is about a
factor 103 smaller than the drop radii.

This article is only concerned with the first step. That is, calculations of approaching
drops will be stopped at small gaps before deformation occurs. For these small gaps,
we will say that ‘collision’ occurs, although we do not calculate the subsequent
phenomena leading to contact and drops coalescence.

Drops considered here are small enough for the Reynolds numbers of the flows
outside and inside the drops to be low and Stokes equations to apply. Nevertheless,
inertia may be important in the motion of drops since the ratio of the density of the
liquid to that of the gas is large. The consistency of these various assumptions will
be made clear in § 2.

The influence of drop inertia when in sedimentation was taken into account by
Hocking & Jonas (1970) and Jonas (1972). They used expressions for the forces on
particles derived by Stimson & Jeffery (1917). Jonas (1972) also used a correction
factor in order to account for the effect of gas rarefaction between two close drops, at
the last stage of collision. Davis (1984) calculated the collision efficiency of sedimenting
solid spheres. He determined their relative trajectories, using the coefficients for the
forces on the spheres derived by Jeffrey & Onishi (1984). He also introduced the
effects of gas rarefaction and van der Waals forces.

The collision of drops in linear flow fields was studied by Wang, Zinchenko & Davis
(1994). Their calculation only applies to small drops in aerosols, or to hydrosols, since
they do not consider drop inertia.

The goal of this article is a systematic study of the influence of drop inertia on the
collision of drops in linear flow fields. The article structure is the following.

Section 2 is devoted to a discussion of the various assumptions. Sedimentation
effects are neglected in the calculation of collisions. Here, the shear rate is assumed to
be strong enough for the shear flow velocity to be larger than the fluid velocity due to
sedimentation. Van der Waals forces are taken into account but gas rarefaction effects
are not considered in the collision step. The assumptions are discussed by calculating
orders of magnitude of the various non-dimensional numbers. Ranges of parameters
compatible with the assumptions are displayed for the typical case of water drops in
air.

A comprehensive set of results for the hydrodynamic forces on two drops in a
general linear flow field is presented in § 3. The formulation uses a superposition of
elementary linear flow fields. Earlier results for such flow fields are complemented
here by the solution for two drops at rest in a shear flow aligned with their line of
centres. This problem is solved by the technique of bipolar spherical coordinates. A
verification is also provided by superposition of other elementary flow fields. Finally,
a tensorial expression is provided for the general expressions for the forces.

These results for the forces are used in § 4 to calculate the collision efficiency of drops
in linear shear flows, namely a simple shear flow and an axisymmetric pure straining
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motion. Although the same results allow the more general problem of sedimentation
in a general linear flow field to be considered, the calculations would require a more
complicated treatment of three-dimensional trajectories which is outside the scope of
this article. Equations of motion of the drops with the expressions for the forces from
§ 3 are integrated to provide their trajectories. The collision efficiency is determined
from relative trajectories for which collisions occur.

Results are presented and discussed in § 5. Finally, the conclusion is in § 6.

2. Discussion of assumptions and orders of magnitude
Consider two drops with radii a1 and a2, with a2 6 a1. The dispersed phase (the

drops) is denoted with a subscript d and the continuous phase with a subscript c. Let
ρ be the density, µ and ν the dynamic and kinematic viscosities, respectively. Relevant
non-dimensional numbers are the ratio of radii λ = a2/a1, the density ratio ρ̂ = ρd/ρc
and the viscosity ratio µ̂ = µd/µc. Let γ denote a characteristic shear rate of the flow
field.

Inertia in the motion of fluids is neglected. That is, we assume that the drops are
small enough for the Reynolds numbers of the flows outside and inside the drops to
be small. In the continuous phase, it is sufficient to write the condition for the flow
around the largest drop:

Rec =
γa2

1

νc
� 1. (2.1)

It is assumed that the drop interface is clean, namely that there is no interfacial
film. Then the condition of continuity of tangential stresses at the interface gives
vc = µ̂vd, where v denotes a characteristic value of the fluid velocity in each phase.
With vc = γa1, the Reynolds number for the flow inside drop 1 is

Red =
vda1

νd
=

ρ̂

µ̂2
Rec. (2.2)

This number is assumed to be small, and so is that for the flow inside drop 2.
The inertia in the motion of drop 1 is characterized by the Stokes number St1,

which is introduced in a natural way in the dimensionless equation of motion (4.1a).
The reference quantities used there and throughout the article are γ−1 for the time,
(a1 + a2)/2 for the lengths, vγ = γ(a1 + a2)/2 for the velocities and 3πµcγ(a1 + a2)

2/2
for the forces. Using (2.1), the Stokes number is written as

St1 =
4

9
Rec

ρ̂

1 + λ
. (2.3)

Drop inertia is important when St1 is of order unity or larger. From (2.1)–(2.3), it is
seen that:

(a) St1 = O(1) and Red � 1 require that µ̂� 1,
(b) St1 = O(1) and Rec � 1 require that ρ̂� 1,

which is the case of drops of liquid in a gas (typically, water drops in air).
In the calculations of the relative trajectories of two drops (§ 4), sedimentation

forces will be assumed to be negligible compared with the shear forces. The relevant
sedimentation velocity for encounters between drops is the relative velocity, which
is of the order of the difference of the velocities of drops falling in isolation; from
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Figure 1. Map of shear rate γ versus the radius of the largest drop a1 for water drops in air.

Hadamard (1911) and Rybczynski (1911)

∆vd =
2

9

a2
1 − a2

2

νc

µ̂+ 1

µ̂+ 2/3
(ρ̂− 1)g, (2.4)

where g is the acceleration due to gravity. The assumption states that ∆vd is negligible
compared with the characteristic velocity vγ for the shear flow. This condition provides
a lower value γmin for γ.

It will now be shown how the shear rate γ can be large enough for this condition
to apply, while keeping the above assumption of small Reynolds numbers and still
allowing the Stokes number to be of order unity. All these conditions are represented
in a map of γ versus a1, figure 1, for the typical case of water drops in air. The
lower bound γmin is represented for various values of the relative difference in radii,
(a1 − a2)/a1. The condition Rec � 1 appears as an upper bound γmax for γ. Lines
of constant Stokes number St1 (with λ = 1) are displayed. Admissible ranges of the
drop size and monodispersity and of the shear rate combine to give a set of values
for which the present model applies.

Typical applications of the present model are flows of dispersions of drops with
a shear rate of 103 to 105 s−1, such as in nozzles, strongly sheared layers, jets and
boundary layers.

For environmental applications, it is questionable whether the model applies to
the formation of large drops in cumulus clouds. It is recognized that drops forming
by condensation tend to become of uniform size (Jonas 1996): since d(a2)/dt '
constant, da/dt is larger for small drops and smaller for large drops. Because of
this monodispersity, we expect relative sedimentation effects to be small compared
with shear flow effects. In cumulus clouds with a strong convection, the rate of
dissipation of turbulent energy, ε, is approximately 0.15 W kg−1 (Fuchs 1964). For air,
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the Kolmogorov scale ηK = (ν3
c /ε)

1/4 then is around 400µm. For drops smaller than
ηK , the flow may be locally considered as a shear flow, with a rate of shear γ =√
ε/νc ≈ 100 s−1. Consider for instance drops with radii a1 = 10 µm and a2 = 9.9 µm.

From figure 1, their relative velocity of sedimentation is about 1/5 of the shear flow
velocity, and neglecting it would be a rough approximation. Moreover, the Stokes
number is small (around 0.1) so that the present analysis is not useful for this case. A
Stokes number of order unity would correspond to a shear rate that would be about
10 times larger, that is γ ∼ 103 s−1. Thus, a description of drops collisions in cumulus
clouds would require the study of the combined effects of relative sedimentation and
shear flows. We leave this point for further research.

The relative importance of attractive van der Waals forces may also be questioned.
These forces are expressed as the gradient of a potential, Φ12. Omitting the retardation
effect, the classical expression obtained by Hamaker (1937) is for unequal particles:

Φ12(s) = −A
6

{
8λ

(s2 − 4)(1 + λ)2
+

8λ

s2(1 + λ)2 − 4(1− λ)2

+ ln

[
(s2 − 4)(1 + λ)2

s2(1 + λ)2 − 4(1− λ)2

]}
, (2.5)

where A is the Hamaker constant (that is of the order of 10−19 J) and s = 2r/(a1 +a2),
where r is the distance between the sphere centres. A dimensionless number comparing
hydrodynamic and van der Waals forces is

Q12 =
(a1 + a2)vγ

2(m1 + m2)A
(2.6)

where mα is the mobility of drop α. From the expression for the drag force on a drop
derived by Hadamard (1911) and Rybczynski (1911):

mα =
1

6πµcaα

µ̂+ 1

µ̂+ 2/3
. (2.7)

Lines for Q12 = 1, 102, 104 are plotted for the case λ = 1 in figure 1. In general, van
der Waals forces are efficient for small drops and inertia for large drops. However,
the figure shows that for small drops it is possible that Q12 = 103 (giving a significant
effect on the collision efficiency, as will be presented later) while St1 = 1. Another
representation of the relative effects of drop inertia and van der Waals forces is the
product of non-dimensional numbers St1Q12 = (a/l)5, where the length l varies like
γ−2/5. A typical value of l for equal water drops in air is 1 µm for γ = 104 s−1. From
this discussion, it appears that the calculation of collisions should include van der
Waals forces together with drop inertia.

Another possible physical effect on small drops is Brownian motion. The relative
effect of Brownian motion is represented by the Péclet number:

Pe12 =
(a1 + a2)vγ

D12

, (2.8)

where D12 is a constant of the order of the relative diffusion coefficient of the pair
of drops. It may be taken as D12 = kT (m1 + m2), where k is Boltzmann’s constant
and T the absolute temperature. As drops considered here are larger than a micron,
Pe12 � 1 so that Brownian motion is negligible.

Finally, our assumption that gas rarefaction effects are negligible requires a lower
bound for the sizes of the gaps that we consider, since the mean free path in air
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is of the order of 0.05µm. For smaller gaps, there would also be drop deformation
together with rarefaction effects. We leave these effects for further research.

3. Hydrodynamic forces on two drops in a general linear flow field
Expressions for the hydrodynamic forces acting on two solid spherical particles

embedded in a general flow field are now well known. A collection of results is
provided, e.g. in the handbook of Kim & Karrila (1991). By comparison, results for
two drops are not so comprehensive.

Drops considered here are spherical, and the classical boundary conditions of
continuity of fluid velocity and tangential stress apply on their surfaces. From the
linearity of Stokes equation, expressions for the forces acting on two drops moving
with given velocities in a general linear flow field can be written as the sum of forces
on the drops moving with these velocities in a fluid at rest and forces on the drops at
rest in the linear flow field.

The first problem is well documented. Its solutions will be recalled briefly here since
it is also needed for the second problem. Again by linearity of the Stokes equations,
the drag forces F 1, F 2 on the drops in a fluid at rest depend on their velocities V 1,
V 2 through linear relationships:

F 1 = −6πµca1(A11 · V 1 + A12 · V 2), (3.1a)

F 2 = −6πµca2(A21 · V 1 + A22 · V 2). (3.1b)

The Aαβ (where α, β = 1, 2) are second-rank tensors with components (using the
notation of Jeffrey 1992):

A
(αβ)
ij = XA

αβdidj + (δij − didj)Y A
αβ, (3.2)

where d is the unit vector along the line of centres. The XA
αβ and the Y A

αβ are non-
dimensional frictions coefficients depending on the ratio µ̂ of viscosities, on the ratio
λ of radii and on the dimensionless distance s between the centres of the drops. The
XA
αβ correspond to a motion of the drops 1, 2 along their line of centres and the Y A

αβ

to a motion perpendicular to that line.
Unlike the general expressions for solid spherical particles, equations (3.1) do

not contain rotation velocities of the drops. This is because the torque on a drop
vanishes in any flow field (see Appendix A). Thus, the rotation velocities of the
drops are linearly dependent on their translational velocities and are incorporated
systematically in (3.1). That is, these equations are analogous to those for freely
rotating solid particles.

Expressions for these frictions coefficients as series in 1/s were obtained by Hetsroni
& Haber (1978). These relations are valid for large s and were obtained from the
method of reflections. Results for the forces on close drops (ξ = s − 2 � 1) moving
along their line of centres were computed by Davis, Schonberg & Rallison (1989)
using a boundary collocation technique. Their result for XA

αβ is provided in term of
Padé approximants:

XA
11 = λXA

22 =
2λ2

(1 + λ)3ξ
f(m), XA

12 = λXA
21 = −XA

11, (3.3a, b)

with

f(m) =
1 + 0.38m

1 + 1.69m+ 0.43m2
, m =

1

µ̂

√
2λ

(1 + λ)2ξ
, and ξ = s− 2. (3.4a, b)
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λ = 0.5 λ = 1

ξ = 10−4 0.5407 0.5264
ξ = 10−3 0.7853 0.7753
ξ = 10−2 0.9199 0.9155

Table 1. Values of f(m) defined in (3.4) for µ̂ = 100.

The possibility of collision is reduced by the large values of the friction coefficients
for small gaps: e.g. XA

11 ∼ 103 for the closest separations (ξ = 10−4) considered in
our calculation of the collisions of drops. The function f(m) in (3.4) represents the
ratio of the friction coefficients for drops to those for solid particles. Values of this
function for drops in air (µ̂ = 100) are displayed in table 1. It can be as low as 0.5 for
ξ = 10−4. Thus, when calculating collisions, it is necessary to take into account the
flows inside drops, despite the apparently large ratio of viscosities between the drops
and the surrounding gas.

There are no lubrication results similar to (3.3) and (3.4) for the Y A
αβ , that is for the

forces on close drops moving perpendicular to their line of centres. The only available
estimate is provided by Zinchenko (1982):

Y A
αβ(ξ, λ, µ̂) = Y A

αβ(0, λ, µ̂) + O(| ln ξ|−1). (3.5)

Results for the friction coefficients on drops at intermediate distances were calcu-
lated with the method of bispherical polar coordinates (Jeffery 1912): the XA

αβ were

obtained by Haber, Hetsroni & Solan (1973) and the Y A
αβ by Zinchenko (1980). This

completes the presentation of the solutions for two drops moving in a fluid at rest.
Results for two drops at rest embedded in a general linear flow field are not com-

prehensive at present and this problem will now be studied in detail. The unperturbed
velocity in a general linear flow field is written as

U∞(x) = U∞0 +Ω∞ × x+ E∞ · x, (3.6)

where the velocity U∞0 , the vorticity Ω∞ and the rate-of-strain tensor E∞ are constants.
Denoting the constant unperturbed velocity gradient Γ = ∇U∞, the rate-of-strain
tensor is written explicitly as its symmetric expression: E∞ = (Γ+ tΓ)/2.

Results for the forces were obtained with the method of bispherical polar coordi-
nates. The position xOb of the origin Ob of these coordinates (cf. figure 2) is calculated
from the positions of the sphere centres x1 and x2 by

xOb =

[
1

2
+

2(λ− 1)

s2(1 + λ)

]
x1 +

[
1

2
− 2(λ− 1)

s2(1 + λ)

]
x2. (3.7)

Changing the frame of reference, the flow field is decomposed into two parts:

U∞(x) = U∞0 +Ω∞ × xOb + E∞ · xOb︸ ︷︷ ︸
U (I)∞

+Ω∞ × (x− xOb) + E∞ · (x− xOb)︸ ︷︷ ︸
U (II)∞(x−xOb )

, (3.8)

namely a constant flow field and a linear flow field in the framework with origin xOb .
Forces for the constant flow field are obtained by noting that the problem is

equivalent to that of two drops moving with the same velocity −U (I)∞ in a fluid at
rest. It is thus sufficient to replace V 1 and V 2 by −U (I)∞ in equations (3.1).
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Figure 2. Reference frame of the bispherical polar coordinates.

Defining xb = x− xOb , the second part of the unperturbed flow field is rewritten as

U (II)∞(xb) = Γ · xb. (3.9)

From linearity of the Stokes equations, the forces on the drops are obtained by
superposition of expressions obtained for simpler flow fields, namely simple shear
flows and pure straining motions. Some of these flow fields give zero force, as can
be found using symmetry arguments and the reversibility of Stokes equations, in the
spirit of Bretherton (1962). Details of the decomposition may be found in Pigeonneau
(1998). With these results, the drag forces can be written in term of a limited number
of coefficients:

F (II)
1 = −6πµca

2
1[(D

xz
1 γxz + Dzx

1 γzx)i + (Dyz
1 γyz + D

zy
1 γzy)j + Dzz

1 γzzk], (3.10a)

F (II)
2 = −6πµca2a1[(D

xz
2 γxz + Dzx

2 γzx)i + (Dyz
2 γyz + D

zy
2 γzy)j + Dzz

2 γzzk], (3.10b)

where the γ with subscripts are the components of tensor Γ and i, j , k are the unit
vectors, in the (Ob; x; y; z) reference frame depicted in figure 2. The D are friction
coefficients. By symmetry, the problems for the shear rates γxz , γzx are identical to the
ones for γyz , γzy , respectively, so that Dxz

α = Dyz
α and Dzx

α = Dzy
α , for α = 1, 2. The D

depend on s, λ and µ̂. They are calculated by resolving the three problems represented
in figure 3, namely (i) a pure shear flow perpendicular to the line of centres, (ii) one
parallel to that line, (iii) a pure straining motion.

In their treatment of neutrally buoyant drops without inertia, Wang et al. (1994)
used an expression for the mobilities derived by Batchelor & Green (1972). The
unperturbed flow field was decomposed as a solid body rotation and a pure straining
motion. When inertialess particles are embedded in a solid body rotation flow, they
move with the velocity of that flow. Then Wang et al. (1994) showed that they only
needed to solve the first and third problems in figure 3. Their solution follows the
earlier solution of Zinchenko (1980) for the shear flow in the case of equal drops.

On the other hand, here drops with inertia embedded in a solid body rotation flow
field do not necessarily follow this flow. For this reason, the second problem in figure 3
has to be resolved. Its solution is obtained here by the method of bispherical polar
coordinates, a generalization of the technique of Zinchenko (1980). Details of the
derivation of this new solution are given in Appendix B, where results are provided
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Figure 3. The three cases to compute the D friction coefficients; a pure shear flow,
(a) perpendicular and (b) parallel to the line of centres; (c) a pure straining motion.
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for the friction coefficients Dzx
1 , Dzx

2 . When the interior viscosity of the drops becomes
infinite, for µ̂ → ∞, the forces on the drops should become equal to those acting on
freely rotating solid particles. The friction coefficients Dzx

1 , Dzx
2 for solid particles were

calculated as expansions for small gaps (lubrication) and for large gaps (expansions
in powers of 1/s) using the results of Kim & Karrila (1991) and Jeffrey (1992) (for
details see Pigeonneau 1998). They are compared in figure 4 with those of drops with
µ̂ = 107, for the two different values λ = 0.1 and 0.5. The agreement is very good for
most of the range.

Alternatively, the coefficients Dzx
1 and Dzx

2 for drops can be obtained by an another
method, thus providing a verification of the calculation in bispherical polar coordi-
nates. It is well known that, from the linearity of the Stokes equations, a shear flow
along the line of centres is equivalent to the sum of a shear flow perpendicular to the
line of centres and a solid body rotation, as shown in figure 5.

The forces on drops at rest in a fluid moving in solid body rotation are calculated
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Figure 5. Decomposition of the shear flow along the line of centers.

in a framework rotating with the fluid. Since fluid inertia vanishes, they are equal to
the drag forces on drops moving with the appropriate velocities in a fluid at rest:

F
pr
1 = −6πµca

2
1(Y11l1 − Y12l2)γzx, (3.11a)

F
pr
2 = −6πµca2a1(Y21l1 − Y22l2)γzx, (3.11b)

where a1lα is the distance between the origin of the bispherical polar coordinates and
the centre of drop α; in terms of λ and s the non-dimensional distances are

l1 =
s(1 + λ)

4
+

1− λ
s

, l2 =
s(1 + λ)

4
− 1− λ

s
. (3.12a, b)

The decomposition of figure 5 gives

Dzx
α = Dxz

α + Y A
α1l1 − Y A

α2l2 (α = 1, 2). (3.13)

The friction coefficients Y A
αβ and Dxz

α were calculated with the method of bispherical
polar coordinates using the results of Zinchenko (1980) and Wang et al. (1994). The
resulting values of Dzx

α obtained from (3.13) were then found to be identical, within
the precision of the numerical calculation, to our result calculated directly by the
method of bispherical polar coordinates, equations (B 30a), (B 30b). This agreement
provides a verification of the different approaches.

The expansions (3.13) also give more insight when combined with the other ele-
mentary flow fields. For after extracting the unperturbed velocity at the centres of the
drops, the hydrodynamic forces (3.10) can be written in tensor notation (for details,
see Pigeonneau 1998):

F (II)
1 = −6πµca1[−A11 ·U (II)∞(xb1)− A12 ·U (II)∞(xb2) + a1G1:E

∞], (3.14a)

F (II)
2 = −6πµca2[−A21 ·U (II)∞(xb1)− A22 ·U (II)∞(xb2) + a1G2:E

∞], (3.14b)

where Gα is a third-rank tensor which must be symmetrical in the last two indices. By
similarity with the notation for the forces on solid particles, the general form of Gα is

G
(α)
ijk = XG

α didjdk + Y G
α (djδik + dkδij − 2didjdk). (3.15)

By identification, we find

XG
α = XA

α1l1 −XA
α2l2 + Dzz

α , (3.16a)

Y G
α = Y A

α1l1 − Y A
α2l2 + Dxz

α . (3.16b)

Note that from equations (3.13), the coefficients Y G
α are identical to the Dzx

α .
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Figure 6. Results for Dzz
1 and Dzz

2 as functions of the normalized gap ξ for µ̂ = 100 and for values
of λ from 0.1 to 1 in steps of 0.1. Dzz

1 is decreasing with λ whereas Dzz
2 is increasing.

Lubrication expressions for coefficients XG
α can be obtained by noting that the

coefficients Dzz
α do not diverge for ξ → 0. Values of Dzz

α calculated in bispherical
polar coordinates are plotted in figure 6 for the case of water drops in air, with
viscosity ratio µ̂ ' 100 and for various values of the radii ratio. As a result, first-order
approximations for small ξ are sufficient:

Dzz
α (ξ, λ, µ̂) = Dzz

α (0, λ, µ̂) + O(| ln ξ|−1). (3.17)

Using the lubrication expansions (3.3) for the XA
αβ and (3.12) for the lα, lubrication

expressions for the XG
α follow:

XG
1 (ξ, λ, µ̂) = XA

11(ξ, λ, µ̂)
(ξ + 2)(1 + λ)

2
+ Dzz

1 (0, λ, µ̂), (3.18a)

XG
2 (ξ, λ, µ̂) = −XA

22(ξ, λ, µ̂)
(ξ + 2)(1 + λ)

2
+ Dzz

2 (0, λ, µ̂). (3.18b)

The exact results for XG
1 together with the lubrication expression (3.18a) are repre-

sented in figure 7 for λ = 0.1, 0.5 and 1. Analogous results were obtained for XG
2 and

are not represented here.
Taking also into account the first part of the unperturbed flow fields, (3.8), and the

motions of the drops, we obtain the final tensorial expressions for the drag forces on
drops moving in a general linear flow field:

F 1 = −6πµca1{A11 · [V 1 −U∞(x1)] + A12 · [V 2 −U∞(x2)] + a1G1:E
∞}, (3.19a)

F 2 = −6πµca2{A21 · [V 1 −U∞(x1)] + A22 · [V 2 −U∞(x2)] + a1G2:E
∞}. (3.19b)

These expressions will now be used to determine the trajectories of two interacting
drops, the rate of collision and the collision efficiency.

Note that if the forces were given in the bispherical polar coordinates system, it
would be necessary to introduce a rotation matrix between this framework and the
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Figure 7. XG
1 as a function of ξ for λ = 0.1, 0.5, 1 and various values of the viscosity ratio µ̂.

absolute frame of reference, as was done by Lin (1968) using Eulerian angles. With
the tensorial expressions (3.19a) and (3.19b), the numerical coding is made simpler.

4. Determination of the collision efficiency
4.1. Dimensionless equations of motion

The dimensionless position of drop α will now be denoted x̄α. The dimensionless
momentum and kinematic equations of the drop motion are

St1
dv1(τ)

dτ
= f1,

dx̄1(τ)

dτ
= v1, (4.1a, b)

St2
dv2(τ)

dτ
= f2,

dx̄2(τ)

dτ
= v2, (4.1c, d )

where two Stokes numbers appear, St1 already defined in (2.3) and

St2 = λ3St1. (4.2)

The dimensionless forces fα are sums of hydrodynamic forces and other physical
forces. The hydrodynamic dimensionless drag forces are from (3.19a), (3.19b)

fh1 = − 2

1 + λ

{
A11 · [v1 − u∞(x̄1)] + A12 · [v2 − u∞(x̄2)] +

2

1 + λ
G1: e

∞
}
, (4.3a)

fh2 = − 2λ

1 + λ

{
A21 · [v1 − u∞(x̄1)] + A22 · [v2 − u∞(x̄2)] +

2

1 + λ
G2: e

∞
}
. (4.3b)
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e∞ is the dimensionless rate-of-strain tensor. The other physical forces considered
here are attractive van der Waals forces between the drop surfaces. They are written
in dimensionless form as

fvdw1 = − 1

Q12

2(3µ̂+ 2)λ

3(µ̂+ 1)(1 + λ)2

dφ12(s)

ds

(s
s

)
= −fvdw2 , (4.4)

where s = x̄1 − x̄2, s = |s|, φ12 = Φ12/A and Φ12 was defined in (2.5).

4.2. Method of calculation of trajectories

Collisions between drops are determined by calculating their relative trajectories.
Since drop inertia is taken into account, time appears explicitly in the equations
of motion of two interacting drops, (4.1a)–(4.1d ). These equations should then be
integrated numerically.

When the drops come close together, forces become large and the system of
differential equations becomes stiff. An appropriate integration technique is then
necessary. A fourth-order method semi-implicit with adapted time step developed by
Kaps & Rentrop (1979) was used in the computation.

The solution allows the relative position of the drops to be determined and then
the rate of collision and the collision efficiency in a homogeneous cloud of drops to
be derived. This approach was used by Hocking & Jonas (1970), Jonas (1972) and
Davis (1984) to calculate the collision efficiency of settling spheres.

Two examples of linear flow fields will be treated here: a simple shear flow, § 4.3,
and an axisymmetric pure straining motion, § 4.4.

4.3. Collision efficiency of drops in a simple shear flow

Consider a system of coordinates (x1, x2, x3), with origin at the centre of drop 2. The
unperturbed flow field is the simple shear flow:

u∞(x) = γx3b1, (4.5)

where b1 is the unit vector along the x1-axis (see figure 8).
The initial position of drop 1 ‘far’ upstream of drop 2 is taken at s = s∗. Hydrody-

namic interactions and van der Waals forces are neglected at this distance. That is, the
velocity of sphere 1 is taken to be that of the surrounding fluid. A polar coordinates
system (ρ∗, θ) defined from x2 = ρ∗ cos θ and x3 = ρ∗ sin θ is used in the upstream
area. Values of ρ∗ for which the drops collide are sought by a trial and error method.
The section in which collisions can occur is obtained by repeating this procedure for



372 F. Pigeonneau and F. Feuillebois

various values of θ. It is sufficient to restrict the calculation to the first quadrant by
symmetry.

Once this section of collision is known, the rate of collision in a homogeneous
dispersion of drops can be obtained by the classical method of Smoluchowski (1917);
the expression for the rate of collision is obtained by integrating the flux over the
section of collisionS in the upstream area and multiplying by n1 and n2, the numbers
of drops 1 and 2 per unit volume:

J12 = n1n2

∫
S
|V 12 · b1|dS. (4.6)

V 12 is the relative velocity between the drops; using its value V 12 = γx3b1 in the
upstream area, the rate of collision becomes

J12 = 4
3
(a1 + a2)

3n1n2γE12, (4.7)

where E12 is the collision efficiency defined as

E12 =

∫
S
|x3|dS

4
3
(a1 + a2)3

. (4.8)

Alternatively, using dimensionless coordinates x̄i = 2xi/(a1 + a2) and a dimensionless
section of collision S̄,

E12 =
3

32

∫
S̄
|x̄3|dS̄. (4.9)

A value s∗ = 15 was found to be sufficiently large to describe the upstream area
with a good precision. The section of collision was obtained by calculating a few
points on its boundary which were then interpolated by cubic splines. The integral
for E12 was thereafter calculated by the Gauss–Legendre technique.

4.4. Collision efficiency of drops in an axisymmetric pure straining motion

Consider again a system of coordinates (x1, x2, x3), with origin at the centre of drop
2. The unperturbed flow field is the pure straining motion:

u∞(x) = γ(−x1b1 − x2b2 + 2x3b3), (4.10)

where bi is the unit vector along the xi-axis. A system of spherical coordinates (R, θ, φ)
will also be used (θ = 0 denoting the positive x3-axis).

The determination of the collision efficiency in this case is simpler: since the flow
field is axisymmetric, the section of collision also is axisymmetric; it is determined by
only one limit trajectory for which the drops collide in a meridian plane φ = constant.
This trajectory is represented as a solid line in figure 9. It is tangent to the sphere Sc
with equation R = a1 + a2. Its ‘far’ upstream point where hydrodynamic interaction
and van der Waals forces are neglected is at R = R∗, θ = θd. The dashed line in the
figure is the fluid trajectory that is tangent to the sphere Sc at the same point as the
drop trajectory. That trajectory starts from R = R∗, θ = θf in the upstream area.
By definition, the collision efficiency is the ratio of the incoming flux for the solid
line to that for the dashed line. The dotted line in figure 9 is the trajectory that a
fluid particle would follow starting from the same upstream point as the drop centre.
From the upstream condition that the drop and fluid have equal velocity, the fluxes
for the solid line and the dotted line are equal. The collision efficiency thus can also
be interpreted as the ratio of the incoming fluid flux for the dotted line to that for



Collision of drops with inertia effects 373

x1

θf θd

R*

x3

Sca
1 + a

2

Figure 9. Representation of the limit relative trajectory of the drops (solid line) and limit
streamline in an axisymmetric pure straining motion.

the dashed line. The expression for the rate of collision was given by Zeichner &
Schowalter (1977):

J12 =
8π

3
√

3
(a1 + a2)

3γn1n2E12, (4.11)

where the expression for the collision efficiency in term of the dimensionless distance
s∗ = 2R∗/(a1 + a2) is

E12 =
3
√

3

16
s∗3 cos θd sin2 θd. (4.12)

θd was calculated as in § 4.3 (also with s∗ = 15).
Note that the case represented in figure 9 is that of an incoming drop with a

low inertia; the relative particle trajectory deviates more than the fluid streamlines
becauses of hydrodynamic interactions and the resulting collision efficiency is lower
than unity. However, for increasing drop inertia, namely for increasing Stokes number,
the drop relative trajectories (solid line) deviate less and less (in the limit of infinite
Stokes number, they become parallel). When they deviate less than the streamlines,
the collision efficiency is larger than unity.

5. Results and discussion
5.1. Simple shear flow

Consider first the case of drops with a small Stokes number, St1 = 10−3. Values
of the collision efficiency E12 calculated for various values of the viscosity ratio are
presented in figure 10. They are compared with those obtained for inertialess drops
(St1 = 0) by Wang et al. (1994). There is a threshold of values of λ above which E12

becomes non-zero and our values of this threshold are in good agreement with theirs.
The collision efficiency decreases with increasing viscosity ratio, and for µ̂ = 0.1 and
2 our results also are in good agreement with theirs.

However, a small discrepancy appears for larger values of µ̂, our method giving a
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Figure 10. Collision efficiency as a function of λ for small Stokes number and various values of
the viscosity ratio in simple shear flow. Van der Waals forces are not included.

smaller collision efficiency than Wang et al. (1994). Since this disagreement is more
important for µ̂ ∼ 10, it is probably related to the increase of the lubrication forces
with a decreasing mobility of the interface. Lubrication forces were accounted for by
Wang et al. (1994) with two types of solutions: (3.4) for large µ̂ and another one (see
their appendix) for a medium range of values of µ̂. Considering the purpose of our
application to water drops in air, we only used (3.4) for large µ̂.

We also checked that our result is not affected by possible numerical errors, for
when the drops are close together and the Stokes number is small, the system of
differential equations is very stiff. We therefore tried another numerical method, the
extrapolation semi-implicit method given by Press et al. (1992). Results obtained with
this alternative method were found to be identical with those computed with the first
method, namely with the fourth-order semi-implicit method with adapted time step
from Kaps & Rentrop (1979).

The influence of van der Waals forces on collisions was studied in the case of water
drops in air, for which the viscosity ratio is approximately 100. It is clear from figure 1
that collisions of drops with a small St1 and a large Q12 cannot be treated without
taking gravity effects into account. The physically relevant range for small St1 is thus
limited here to Q12 6 10. Results for E12 in terms of Q12 are given in figure 11 for
the values 0.2, 0.5 and 1 of the radii ratio. There is a good agreement with the results
of Wang et al. (1994). It may also be remarked that in this range of values of Q12

the efficiency varies like E12 ∼ Q
−1/n
12 . The values of n obtained by linear regression

in the log-log plot are n = 2.23, 3.33, 3.71 for λ = 0.2, 0.5, 1.0, respectively. For λ = 1,
n ' 4 is close to the numerical result obtained by Chesters (1991) for collisions of
solid particles by van der Waals forces.

After these preliminary verifications for low Stokes number, we now present the
main results of this article, which concern the influence of inertia on the collision
efficiency. We consider here liquid drops in a gas, e.g. water drops in air, for which
the viscosity ratio is approximately 100.

The influence of the Stokes number is displayed in figure 12 which gives E12 as a
function of λ for various values of St1 and for Q12 = 103 and 104. As expected, the
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Figure 11. Collision efficiency of water drops in air as a function of Q12 for small Stokes number,
St1 = 10−3, and for λ = 0.2, 0.5, and 1 in simple shear flow.

inertia of the drops increases the collision efficiency. For a constant λ, E12 increases
with St1. Since from (4.2) St2 is proportional to St1, E12 also increases with St2 for a
constant λ. From (4.2), St2 is proportional to λ3 so that E12 also increases with St2
for a constant St1. For Q12 = 103, a significant value of E12 below λ = 0.2 could only
be obtained with a very large value of St1. Thus, there is in practice a threshold at
λ = 0.2, below which E12 vanishes. The surprising result is that this threshold appears
to be the same for all values of St1. For Q12 = 104, the threshold is at λ = 0.3. Thus,
when van der Waals interaction forces are an order of magnitude smaller, there is a
dramatic decrease in the collision efficiency of drops in the range of radii such that
0.2 < λ < 0.3. As expected, values of the collision efficiency for Q12 = 104 are smaller
than those for 103, since van der Waals attractive forces are weaker. The cross-over
of the curves in figure 12 is difficult to interpret physically and should be considered
as a numerical artefact, the distance between curves for 0.2 6 λ 6 0.3 then giving an
estimate of the calculation error on E12.

The collision efficiency was computed for a large range of values of the Stokes
number St1. It is represented in figure 13 for Q12 = 103 and 104. For a very large
Stokes number, E12 would reach unity as expected. For the smallest values of the
Stokes number, the effect of van der Waals forces becomes more important; there is
a small change in curvature in the curves.

The effect of van der Waals forces on the shape of the section of collision is
obvious. As an example, figure 14 represents the sections of collision for drops of the
same size and various values of the Stokes number. A change in the shape of the
section of collision is observed for values of St1 above St1 ' 6. When St1 < 6, the
sections of collision are nearly elliptic. When St1 > 6, a protuberance appears. The
effect of drop inertia can be interpreted as follows. When the line of centres of the
drops is close to the plane x̄2 = 0, the difference in the drop velocities is larger than
when it is nearly perpendicular to that plane. Inertia effects are thus more important
in the first configuration and van der Waals forces in the second configuration. It
may thus be understood why the section of collision increases with St1 close to the
plane x̄2 = 0 and does not increases close to the plane x̄3 = 0. Analogous sections of
collision were obtained for Q12 = 104.
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Figure 12. Collision efficiency as function of λ for (a) Q12 = 103, (b) Q12 = 104 and for various
values of the Stokes number in simple shear flow.

5.2. Pure straining motion

As in the preceding subsection, we begin by comparing our results in the case of a
low Stokes number (St1 = 10−3) with those of Wang et al. (1994) for inertialess drops.
The collision efficiency is first plotted versus the ratio of radii for various values
of the viscosity ratio in figure 15. There appears to be no threshold for this type
of flow, unlike the pure shear flow. The agreement between our results and those of
Wang et al. (1994) is good for small values of the viscosity ratio. However, like in the
shear flow and probably for the same reason, there is a discrepancy which increases
with the viscosity ratio, that is when lubrication effects for close drops become more
important. The effect of van der Waals forces is displayed in figure 16, where values
of E12 are given for Q12 = 1 and 10, the upper value being chosen for the same reason
as in the preceding subsection. As in the case of a simple shear flow, there is a good

agreement with the results of Wang et al. (1994). Here again, E12 ∼ Q−1/n
12 , where from

regression analysis n = 3.63, 4.34, 4.66 for λ = 0.2, 0.5, 1.0, respectively. There is no
possible comparison with Chesters’ (1991) results which are limited to the pure shear
flow.

Until now, values of E12 were found to be smaller than unity. However in a pure
straining motion, the collision efficiency can be larger than unity, as remarked at the
end of § 4. Indeed, the values that we obtain are much larger than unity, as shown
in figure 17 for Q12 = 103 and 104. It is observed that for a constant λ, the collision
efficiency strongly depends on drop inertia. In particular, for λ close to unity, there is
a sharp increase of E12 when St1 varies from 0.5 to 1.5. For large values of St1, E12

reaches an asymptotic value. For example, when λ = 1, the value reached at St1 = 103
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Figure 13. Collision efficiency as function of St1 for (a) Q12 = 103, (b) Q12 = 104 and for various
values of the radii ratio in a simple shear flow.
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Figure 14. Sections of collision for drops of the same size for Q12 = 103 and various values of the
Stokes number St1.

is E12 ' 50. The only obvious difference between the results for Q12 = 103 and 104 is
for small Stokes numbers and λ ' 1 since van der Waals forces then become more
important than inertial effects.

The sharp increase of E12 when St1 varies from 0.5 to 1.5 is obvious in figure 18
in which E12 is represented as function of St1 for various values of the radii ratio
for Q12 = 103 and 104. There is also a rapid increase of the collision efficiency when
λ increases from 0.1 to 0.2. This behaviour is connected to the value of the Stokes
number of the smaller drop, (4.2).
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Figure 16. Collision efficiency of water drops in air as a function of Q12 for small Stokes number,
St1 = 10−3, and for λ = 0.2, 0.5, and 1 in an axisymmetric pure straining motion.

For λ = 0.1, the collision is mainly directed by van der Waals forces; the curves
for Q12 = 103 and 104 (the λ = 0.1 curves in figure 18a, b) thus are different. As in
figure 17, there is also a small difference between the curves for Q12 = 103 and 104

for small St1, for the reason indicated above.

6. Conclusion
The focus of this article is on the influence of the inertia of drops on their collision

efficiency in linear flow fields. Gravity effects are neglected and it is shown that this
assumption is compatible with a significant inertia of drops if the shear flow is strong
enough. Figure 1 gives an overview of orders of magnitude compatible with the
assumptions for the typical case of water drops in air.

A comprehensive set of results is presented for the drag forces on two drops
moving in a general linear flow field. This problem is solved by superposition of
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several elementary linear flow fields (simple shear flows, pure straining motions).
Because of drop inertia effects, it is necessary to consider the yet unresolved case of a
shear flow parallel to the line of centres. This problem is treated here by two different
techniques: the application of the method of bispherical polar coordinates and a
superposition of solutions for other flow fields. The results from both approaches are
found to be identical within the computational error, thus providing a verification
of all calculations and computations involved in these various problems. Finally, a
tensorial expression is proposed for the general expressions for the drag forces.

These results for the hydrodynamic forces together with classical expressions for
the van der Waals forces then are used to calculate the relative trajectories of two
close drops and sections of collision. The calculation is performed for typical linear
flow fields, namely a simple shear flow and an axisymmetric pure straining motion.
For both flow fields, results obtained for drops with a low Stokes number are in good
agreement with those of Wang et al. (1994). There is only a small discrepancy for low
van der Waals forces (i.e. for large Q12), for nearly equal drops. For non-negligible
drop inertia, results show that, as expected, the collision efficiency increases with
the Stokes numbers. A surprising result for a shear flow (§ 5.1) is the presence of a
threshold of the collision efficiency E12 for a given ratio of radii λ, regardless of the
Stokes number St1 of the larger drop. For Q12 = 103, this threshold is at λ = 0.2
and for Q12 = 104, it is at λ = 0.3. The concurrent effects of drop inertia and van
der Waals forces appear in the shape of the section of collision: for increasing Stokes
number, it becomes anisotropic due to the different relative effects of van der Waals
and inertial forces in two perpendicular planes. By comparison, the results for the
collision efficiency in an axisymmetric pure straining motion (§ 5.2) are more regular.
This flow field induces strong inertial effects so that the collision efficiency may be
much larger than unity. Effects of van der Waals forces become significant only when
one of the drops has a very low Stokes number. Since the flow field is axisymmetric,
van der Waals forces and inertia effects combine in a simple way.

In conclusion, these results have shown the strong influence of drop inertia. Earlier
works omitting this effect while taking into account hydrodynamic interactions un-
derestimate the collision efficiency and this discrepancy may be quite large for a pure
straining motion. More elementary approaches ignoring hydrodynamic interactions
and inertia effects overestimate (for a pure shear flow) or underestimate (for a pure
straining motion) the rate of collision.

Extensions of this work would include a correct account of the close encounter
between drops, including gas rarefaction effects (like was done by Davis 1984 for
settling particles) and the local deformation of drops. As shown in § 2, a description
of drop collisions in clouds leading to the formation of rain should also involve
coupled effects of sedimentation and linear shear flows. Applications to other fluids
could also be considered, provided that the conditions of § 2 are satisfied, that is the
density ratio ρ̂ and the viscosity ratio µ̂ are large compared with unity. Note that µ̂
need not be very large because of the µ̂2 coefficient in (2.2).

We would like to acknowledge the comments of referees.

Appendix A. The torque on a drop always vanishes
Consider a drop with radius a and surface S . The torque on the drop due to a flow

field with stress tensor σc is

C =

∫
S

an× (σc · n) dS, (A 1)
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where n is the unit vector normal to S . The normal stress gives a zero contribution.
The tangential stress is continuous across the interface S . Thus we may replace σc

by σd in (A 1) and obtain the torque on the volume of fluid V inside the drop. This
torque vanishes since there is no external applied torque to the fluid and inertia of
the fluid motion is negligible.

The consistency with the Stokes equations may be verified in a classical way.
Rewriting (A 1) in index notation with Einstein’s summation convention and the
Levi–Civitta alternating tensor:

Ci = a

∫
S

εijknjσklnl dS. (A 2)

Applying the divergence theorem and expanding:

Ci =

∫
V

∂

∂xl
εijkxjσkldV =

∫
V

(
εilkσkl + εijkxj

∂

∂xl
σkl

)
dV . (A 3)

The first term vanishes since the stress tensor is symmetric and the second term
vanishes from the fluid momentum equation.

Appendix B. Drag forces due to a shear flow along the line of centres
The main formulae are presented here. Details of the derivation may be found

in Pigeonneau (1998). Following O’Neill & Majumdar (1998), consider a system of
cylindrical coordinates (ρ, θ, z) and the associated bispherical polar coordinates system
(ζ, η, θ) defined from

z =
c sinh ζ

cosh ζ − cos η
, ρ =

c sin η

cosh ζ − cos η
, (B 1)

where c is a geometrical constant. The surface of each drop corresponds to a constant
value of ζ (say ζ1, ζ2, respectively). These constants can be fixed by the distance
between the centres of the drops and their radii:

cosh ζ1 =
s(1 + λ)

4
+

(1− λ)
s

, sinh ζ2 = −sinh ζ1

λ
, c = a1 sinh ζ1. (B 2)

The determination of the forces is based on the expression for the external flow
field, outside the drops. Flows outside and inside the drops are coupled. They are
calculated by resolving the Stokes equations.

The external flow field is decomposed as the sum of the unperturbed field and
a perturbed field. When written in cylindrical coordinates, the unperturbed field
becomes

U∞ρ = 0, U∞θ = 0, U∞z = γzxρ cos θ. (B 3)

The general solutions for the velocity and pressure of the external perturbed field
and of those inside of the drops are

uρ =
(ρ
c
Q+W 1 +W−1

)
cos θ, uθ = (W 1 −W−1) sin θ, uz =

(z
c
Q+ 2W 0

)
cos θ,

(B 4a–c)

p =
2µc
c
Q cos θ. (B 5)

The functions Q, W 1, W−1 and W 0 are solutions of the partial differential equations

L2
1Q = 0, L2

1+iW
i = 0, i = −1, 0, 1, (B 6a, b)
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where L2
m is an operator defined as

L2
m =

∂2

∂ρ2
+

∂

ρ∂ρ
− m2

ρ2
+

∂2

∂z2
. (B 7)

The results for Q, W 1, W−1 and W 0 are

Q =
√

cosh ζ − cos η

∞∑
n=1

qn(ζ)P
1
n (cos η), (B 8a)

W 0 =
√

cosh ζ − cos η

∞∑
n=1

w0
n(ζ)P

1
n (cos η), (B 8b)

W 1 =
√

cosh ζ − cos η

∞∑
n=2

w1
n(ζ)P

2
n (cos η), (B 8c)

W−1 =
√

cosh ζ − cos η

∞∑
n=0

w−1
n (ζ)Pn(cos η), (B 8d)

where

qn(ζ) = Cne
−(n+1/2)ζ + Dne

(n+1/2)ζ , (B 9a)

win(ζ) = Aine
−(n+1/2)ζ + Bine

(n+1/2)ζ , (B 9b)

for i = 0, 1,−1. Pm
n (x) is the Legendre function given by (Gradshteyn & Ryzhik 1965,

p. 1008).

Pm
n (x) = (−1)m(1− x2)m/2

dmPn(x)

dxm
, (B 10)

where Pn(x) is the Legendre polynomial.
Let the superscripts (e) denote the external flow and (1), (2) the flows inside drops

1, 2, respectively. The coefficients An, Bn in (B 9b) and Cn, Dn in (B 9a) are determined
from the equation of continuity and from the boundary conditions across the drop
surfaces. The boundary conditions give

for drop 1 : D(1)
n = B(1)i

n = 0, ∀n and i = −1, 0, 1, (B 11a)

for drop 2 : C (2)
n = A(2)i

n = 0, ∀n and i = −1, 0, 1. (B 11b)

The external unperturbed flow can be rewritten with a similar formulation in terms
of the function: W∞0 = γzxρ/2, in which ρ can be expanded in term of the Legendre
function with the identity

ρ = −c√cosh ζ − cos η2
√

2

∞∑
n=1

e−(n+1/2)|ζ|P 1
n (cos η). (B 12)

Thus, the following function is introduced:

w∞0
n (ζ) = −c√2γzxe

−(n+1/2)|ζ|. (B 13)

Compared with Zinchenko (1980), there will be some differences in the formulation
because of our definition of the Legendre function.

Formulae are made simpler by introducing the auxiliary functions

αn = 5qn − 2w−1
n + 2(n− 1)(n+ 2)w1

n , (B 14a)
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βn−1 = −(n− 1)qn−1 + w−1
n−1 − (n− 2)(n− 1)w1

n−1, (B 14b)

γn+1 = (n+ 2)qn+1 + w−1
n+1 − (n+ 2)(n+ 3)w1

n+1, (B 14c)

which, on using (B 9a), (B 9b), can be written in the form

αn(ζ) = Ine
−(n+1/2)ζ + Jne

(n+1/2)ζ , (B 15a)

βn(ζ) = Kne
−(n+1/2)ζ +Kne

(n+1/2)ζ , (B 15b)

γn(ζ) = Mne
−(n+1/2)ζ +Nne

(n+1/2)ζ . (B 15c)

This defines the constants In · · ·Nn in terms of the An · · ·Dn.
The equation of continuity for the external flow gives the same relationships as

equation 1.8 of Zinchenko (1980):

I (e)
n +K

(e)
n−1 +M

(e)
n+1 − 2(2n+ 1)A(e)0

n + 2(n− 1)A(e)0
n−1 + 2(n+ 2)A(e)0

n+1 = 0, (B 16a)

J (e)
n + L

(e)
n−1 +N

(e)
n+1 + 2(2n+ 1)B(e)0

n − 2(n− 1)B(e)0
n−1 − 2(n+ 2)B(e)0

n+1 = 0. (B 16b)

The boundary condition of continuity of the tangential fluid velocity across the
interface of drop α (α = 1, 2) gives three equations:

q(α)
n − q(e)

n =
2

sinh ζα

[
n− 1

2n− 1
(Z (α)

n−1 − w∞0
n−1) +

n+ 2

2n+ 3
(Z (α)

n+1 − w∞0
n+1)

− cosh ζα(Z
(α)
n − w∞0

n )

]
, (B 17)

w(α)−1
n − w(e)−1

n =
1

sinh ζα

[
n(n− 1)

2n− 1
(Z (α)

n−1 − w∞0
n−1)− (n+ 1)(n+ 2)

2n+ 3
(Z (α)

n+1 − w∞0
n+1)

]
,

(B 18)

w(α)1
n − w(e)1

n =
−1

sinh ζα

[
Z

(α)
n−1 − w∞0

n−1

2n− 1
− Z

(α)
n+1 − w∞0

n+1

2n+ 3

]
, (B 19)

where

Z (α)
n = w(α)0

n − w(e)0
n . (B 20)

Compared with Zinchenko (1980), here there are new terms in w∞0
n due to the shear

flow with shear rate γzx, (B 13).
The equations of continuity for the inside flows, when combined with (B 17)–(B 19),

give for drop 1

I (e)
n + 2(2n+ 1)A(e)0

n + e2ζ2 [K (e)
n−1 − 2(n− 1)A(e)0

n−1]

+e−2ζ2 [M(e)
n+1 − 2(n− 1)A(e)0

n+1] + e(n+1/2)ζ2X(2)
n = 0, (B 21)

and for drop 2

J (e)
n − 2(2n+ 1)A(e)0

n + e−2ζ1 [L(e)
n−1 + 2(n− 1)B(e)0

n−1]

+e2ζ1 [N(e)
n+1 + 2(n− 1)B(e)0

n+1] + e−(n+1/2)ζ1X(1)
n = 0, (B 22)

where

X(α)
n =

4

sinh ζα

[
n− 1

2n− 1
(Z (α)

n−1 − w∞0
n−1) +

n+ 2

2n+ 3
(Z (α)

n+1 − w∞0
n+1)

+

( | sinh ζα|
2n+ 1

− cosh ζα

)
(Z (α)

n − w∞0
n )

]
. (B 23)
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The condition of zero normal velocity across the interface of drop α at rest gives,
using the βn, γn, defined in (B 14b), (B 14c), respectively

γ
(e)
n+1

2n+ 3
− β

(e)
n−1

2n− 1
+

2 cosh ζα
sinh ζα

[
(n− 1)(w(t)0

n−1)

2n− 1
+

(n+ 2)(w(t)0
n+1)

2n+ 3

]
− 2w(t)0

n

sinh ζα
= 0, (B 24)

where

w(t)0
n = w(e)0

n + w∞0
n . (B 25)

The tangential stress should be continuous across the interface of drop α. Results
again differ from Zinchenko (1980) in the new terms in w∞0

n . The component located
in the meridian plane gives after a few manipulations

3(µ̂− 1)

µ̂+ 1

[
sinh ζαq

(e)
n + 2

(
cosh ζαw

(t)0
n − n− 1

2n− 1
w

(t)0
n−1 − n+ 2

2n+ 3
w

(t)0
n+1

)]

+ cosh ζα

[
n+ 2

2n+ 3
(γ(e)±
n+2 − β(e)±

n ) +
n− 1

2n− 1
(γ(e)±
n − β(e)±

n−2 )− (2n+ 1)q(e)±
n

]

+2 sinh ζα

[
(n− 1)(n− 2)

2n− 1
wt±n−2 +

(n+ 2)(n+ 3)

2n+ 3
wt±n+2 − 2n(n+ 1)(2n+ 1)

(2n− 1)(2n+ 3)
wt±n

]
+β(e)±

n−1 − γ(e)±
n+1 + (n− 1)q(e)±

n−1 + (n+ 2)q(e)±
n+1

+
4µ̂

(µ̂+ 1)| sinh ζα|
{

(n− 2)(n− 1)

(2n− 1)(2n− 3)
(Z (α)

n−2 − w∞0
n−2)

−2(n− 1)2

(2n− 1)2
cosh ζα(Z

(α)
n−1 − w∞0

n−1) +
2

2n+ 1

[
2n(n+ 1)

(2n+ 3)(2n− 1)
− 1

]
(Z (α)

n − w∞0
n )

+
2(n+ 2)2

(2n+ 3)2
cosh ζα(Z

(α)
n+1 − w∞0

n+1)− (n+ 2)(n+ 3)

(2n+ 3)(2n+ 5)
(Z (α)

n+2 − w∞0
n+2)

}
= 0, (B 26)

where the function f±n is defined by

f±n =
(dfn/dζ)± µ̂(n+ 1

2
)fn

(n+ 1
2
)(µ̂+ 1)

. (B 27)

The component in direction θ, when combined with the continuity equations outside
and inside the drops, gives

q(e)±
n =

2(1− µ̂)

µ̂+ 1

{
sinh ζα
2n+ 3

γ
(e)
n+1 +

2(n+ 2) cosh ζα
2n+ 3

w
(t)0
n+1 − w(t)0

n

}
∓ µ̂

2(µ̂+ 1)
X(α)
n .

(B 28)

The forces on drops 1 and 2 are given by

F1x = 8
√

2πµcc

∞∑
n=1

n(n+ 1)D(e)0
n , F2x = 8

√
2πµcc

∞∑
n=1

n(n+ 1)C (e)0
n . (B 29a, b)

The numerical method to find F1x and F2x is identical to that of Zinchenko (1980).
It can be verified that the sums are proportional to γzx, as expected. The coefficients
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Dzx
1 , Dzx

2 defined in (3.10a), (3.10b), then are given by

Dzx
1 = −4

3

√
2 sinh2 ζ1

∞∑
n=1

n(n+ 1)D(e)0
n

cγzx
, (B 30a)

Dzx
2 =

4

3

√
2 sinh ζ1 sinh ζ2

∞∑
n=1

n(n+ 1)C (e)0
n

cγzx
. (B 30b)
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